The DMT classification of real and quaternionic lattice codes
نویسندگان
چکیده
In this paper we consider space-time codes where the code-words are restricted to either real or quaternion matrices. We prove two separate diversity-multiplexing gain trade-off (DMT) upper bounds for such codes and provide a criterion for a lattice code to achieve these upper bounds. We also point out that lattice codes based on Q-central division algebras satisfy this optimality criterion. As a corollary this result provides a DMT classification for all Q-central division algebra codes that are based on standard embeddings.
منابع مشابه
QTRU: quaternionic version of the NTRU public-key cryptosystems
In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...
متن کاملOn the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملA Novel Lattice Architecture for High Speed Discrete MultiTone (DMT) Modulation
The Discrete MultiTone (DMT) modulation system is an attractive method for a high speed data transmission over a nonflat channel with possible colored noise. The IFFT is used in its transmitter in order to divide the available frequency spectrum into large independent narrow band sub-channels. A high speed and an efficient lattice architecture is proposed to implement the IFFT. This will speed ...
متن کاملSpecial geometry, cubic polynomials and homogeneous quaternionic spaces
The existing classification of homogeneous quaternionic spaces is not complete. We study these spaces in the context of certain N = 2 supergravity theories, where dimensional reduction induces a mapping between special real, Kähler and quaternionic spaces. The geometry of the real spaces is encoded in cubic polynomials, those of the Kähler and quaternionic manifolds in homogeneous holomorphic f...
متن کاملQuaternionic Line-Sets and Quaternionic Kerdock Codes
When n is even, orthogonal spreads in an orthogonal vector space of type O-(2n 2,2) are used to construct line-sets of size (2nm1 + 1)2”-’ in W2”~’ all of whose angles are 90” or cos -1(2-(“-2)/2). These line-sets are then used to obtain quatemionic Kerdock Codes. These constructions are based on ideas used by Calderbank, Cameron, Kantor, and Seidel in real and complex spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.02913 شماره
صفحات -
تاریخ انتشار 2018